Classification of simple 2-(6, 3) and 2-(7, 3) trades

نویسندگان

  • Gholamreza B. Khosrovshahi
  • Hamid Reza Maimani
  • Rouzbeh Torabi
چکیده

In this paper, we present a complete classification of the simple 2-(v, 3) trades, for v = 6 and 7. For v = 6, up to isomorphism, there are unique trades with volumes 4, 6, and 10 and trades with volumes 7-9 do not exist; for v = 7, up to isomorphism, there exist two trades with volume 6, two trades with volume 7, two trades with volume 9, five trades with volume 10, and only one trade with volume 12. For v = 7, trades with volumes 8 and 11 do not exist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the spectrum of simple (v, 3, 2) trades

In this paper, we determine the spectrum (the set of all possible volumes) of simple (v, 3, 2) trades for any fixed foundation size v 6≡ 5 (mod 6). Index Words: trades, spectrum, Steiner triple systems, large sets of Steiner triple systems MR Subject Classification: 05B07, 05B05

متن کامل

On 2-(v, 3) trades of minimum volume

In this paper, Steiner and non-Steiner 2-(v, 3) trades of minimum volume are considered. It is shown that these trades are composed of a union of some Pasch configurations and possibly some 2-(v, 3) trades with 6 ≤ v ≤ 10. We determine the number of non-isomorphic Steiner 2-(v, 3) trades of minimum volume. As for non-Steiner trades the same thing is done for all vs, except for v ≡ 5 (mod 6).

متن کامل

On the existence of 3-way k-homogeneous Latin trades

A μ-way Latin trade of volume s is a collection of μ partial Latin squares T1, T2, . . . , Tμ, containing exactly the same s filled cells, such that if cell (i, j) is filled, it contains a different entry in each of the μ partial Latin squares, and such that row i in each of the μ partial Latin squares contains, set-wise, the same symbols and column j, likewise. It is called μ–way k–homogeneous...

متن کامل

On the non-existence of Steiner (v, k, 2) trades with certain volumes

In this note, we prove that there does not exist a Steiner (v, k, 2) trade of volume m, where m is odd, 2k + 3 ~ m ~ 3k 4, and k ~ 7. This completes the spectrum problem for Steiner (v, k, 2) trades.

متن کامل

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1999